Search results

Search for "spin ice" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips

  • Soraya Sangiao,
  • César Magén,
  • Darius Mofakhami,
  • Grégoire de Loubens and
  • José María De Teresa

Beilstein J. Nanotechnol. 2017, 8, 2106–2115, doi:10.3762/bjnano.8.210

Graphical Abstract
  • -vortex-lattice pinning [17]; as well as (d) three-dimensional nanowires for magnetic domain-wall studies [18][19] and for remote magnetomechanical actuation [20], quantum dots for magnetic storage [21] and catalytic purposes [22], polygonal shapes for micromagnetic studies [23][24] and spin-ice
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2017

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • ; magnetic nanostructures; magnetic switching; micromagnetic simulations; plasma etching; spin ice; X-ray microscopy; Introduction In nanotechnology, a widely used approach for tailoring physical properties on the nanometre length scale is the introduction of practically circular holes – so-called antidots
  • , with the antidot distance a, has proven forming an artificial spin-ice system by geometric frustration [16]. Recently, local switching events in such artificial spin-ice systems have attracted much attention for the production of pairs of magnetic monopoles still obeying Maxwell equations [17]. At the
  • regimes for smaller (d < 0.75a) and larger (d > 0.75a) antidots that is investigated in more detail for Fe antidot films by magnetometry in confined geometries, magnetic microscopy and micromagnetic simulations. Two highlights are the formation of an artificial spin-ice structure for the larger antidots
PDF
Album
Full Research Paper
Published 24 May 2016

Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method

  • Alexander Samardak,
  • Margarita Anisimova,
  • Aleksei Samardak and
  • Alexey Ognev

Beilstein J. Nanotechnol. 2015, 6, 976–986, doi:10.3762/bjnano.6.101

Graphical Abstract
  • method is very promising for fabrication of high-quality, artificial, spin-ice lattices [21][22], magnonic [23] and photonic [24] crystals on large scale. An important additional advantage of the proposed method is the fast patterning of a template as compared with the exposure time required for the
PDF
Album
Full Research Paper
Published 17 Apr 2015

Tuning the properties of magnetic thin films by interaction with periodic nanostructures

  • Ulf Wiedwald,
  • Felix Haering,
  • Stefan Nau,
  • Carsten Schulze,
  • Herbert Schletter,
  • Denys Makarov,
  • Alfred Plettl,
  • Karsten Kuepper,
  • Manfred Albrecht,
  • Johannes Boneberg and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2012, 3, 831–842, doi:10.3762/bjnano.3.93

Graphical Abstract
  • PS spheres including the magnetic caps on top may also be removed by chemo-mechanical polishing leading to a void structure, which may potentially be used as 2-D artificial spin-ice systems [27]. In the following, however, we focus on percolated films with magnetic caps present. In summary, the
PDF
Album
Full Research Paper
Published 07 Dec 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • a face-centered tetragonal structure and is hard magnetic at room temperature [34]. Without any doubt FEBID holds great promise to become an important fabrication technique for magnetic nanostructures for micromagnetic studies, such as in the area of artificial spin-ice systems [35] or dipolar
PDF
Album
Video
Review
Published 29 Aug 2012
Other Beilstein-Institut Open Science Activities